22116113

CHEMISTRY

HIGHER LEVEL

PAPER 1

Monday 9 May 2011 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
The Periodic Table

1. What is the total number of hydrogen atoms in 1.0 mol of benzamide, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2}$?
A. 7
B. 6.0×10^{23}
C. 3.0×10^{24}
D. 4.2×10^{24}
2. Chloroethene, $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$, reacts with oxygen according to the equation below.

$$
2 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{~g})
$$

What is the amount, in mol, of $\mathrm{H}_{2} \mathrm{O}$ produced when 10.0 mol of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ and 10.0 mol of O_{2} are mixed together, and the above reaction goes to completion?
A. 4.00
B. 8.00
C. 10.0
D. 20.0
3. What is the concentration of NaCl , in moldm^{-3}, when $10.0 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}$ solution is added to $30.0 \mathrm{~cm}^{3}$ of $0.600 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}$ solution?
A. 0.450
B. 0.300
C. 0.500
D. 0.800
4. Consider the relative abundance of the isotopes of element X .

Isotope	Relative abundance (\%)
${ }^{24} \mathrm{X}$	80
${ }^{25} \mathrm{X}$	10
${ }^{26} \mathrm{X}$	10

What is the relative atomic mass of X ?
A. 24
B. 25
C. Between 24 and 25
D. Between 25 and 26
5. In the emission spectrum of hydrogen, which electronic transition would produce a line in the visible region of the electromagnetic spectrum?
A. $n=2 \rightarrow n=1$
B. $n=3 \rightarrow n=2$
C. $n=2 \rightarrow n=3$
D. $n=\infty \rightarrow n=1$
6. Values for the successive ionization energies for an unknown element are given in the table below.

First ionization energy $/ \mathbf{k J ~ m o l}^{-1}$	Second ionization energy $/ \mathbf{k J ~ m o l}^{-1}$	Third ionization energy $/ \mathbf{k J ~ m o l}^{-1}$	Fourth ionization energy $/ \mathbf{k J}$ mol $^{-1}$
420	3600	4400	5900

In which group of the periodic table would the unknown element be found?
A. 1
B. 2
C. 3
D. 4
7. Which pair of elements has the greatest difference in electronegativity?
A. Cs and F
B. Cs and Cl
C. Cs and Br
D. Cs and I
8. Ligands can form dative covalent bonds with metal ions to form complex ions. Which of the following can act as a ligand?
I. Cl^{-}
II. NH_{3}
III. $\mathrm{H}_{2} \mathrm{O}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
9. Which metal nitrate solution is coloured?
A. $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
B. $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
C. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
D. $\mathrm{Sc}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})$
10. When $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$ are arranged in order of increasing carbon-carbon bond strength (weakest bond first), what is the correct order?
A. $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$
B. $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}$
C. $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}$
D. $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$
11. Which molecule has a non-bonding (lone) pair of electrons around the central atom?
A. BF_{3}
B. SO_{2}
C. PCl_{5}
D. SiF_{4}
12. Which particles are responsible for the conduction of electricity in molten aluminium?
A. Cations
B. Anions
C. Electrons
D. Protons
13. How many sigma and pi bonds are there in propyne, $\mathrm{CH}_{3} \mathrm{CCH}$?
A. 2 sigma and 2 pi
B. 7 sigma and 1 pi
C. 6 sigma and 2 pi
D. 5 sigma and 3 pi
14. Which species does not have delocalized electrons?
A. NO_{3}^{-}
B. NO_{2}^{-}
C. O_{3}
D. $\mathrm{C}_{3} \mathrm{H}_{6}$
15. In which compound are all the carbon atoms sp^{2} hybridized?
A.

B.

C. $\mathrm{CH}_{2} \mathrm{CHCH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCHCH}_{2} \mathrm{CH}_{3}$
16. Which ionic compound has the greatest lattice enthalpy?
A. MgO
B. CaO
C. NaF
D. KF
17. Which equation represents the bond enthalpy for the $\mathrm{H}-\mathrm{Br}$ bond in hydrogen bromide?
A. $\quad \mathrm{HBr}(\mathrm{g}) \rightarrow \mathrm{H}(\mathrm{g})+\mathrm{Br}(\mathrm{g})$
B. $\quad \mathrm{HBr}(\mathrm{g}) \rightarrow \mathrm{H}(\mathrm{g})+\mathrm{Br}(\mathrm{l})$
C. $\mathrm{HBr}(\mathrm{g}) \rightarrow \mathrm{H}(\mathrm{g})+\frac{1}{2} \mathrm{Br}_{2}(\mathrm{l})$
D. $\mathrm{HBr}(\mathrm{g}) \rightarrow \mathrm{H}(\mathrm{g})+\frac{1}{2} \mathrm{Br}_{2}(\mathrm{~g})$
18. Which change will not increase the entropy of a system?
A. Increasing the temperature
B. Changing the state from liquid to gas
C. Mixing different types of particles
D. A reaction where four moles of gaseous reactants changes to two moles of gaseous products
19. ΔG^{\ominus} calculations predict that a reaction is always spontaneous for which of the following combinations of ΔH^{\ominus} and ΔS^{\ominus} ?
A. $+\Delta H^{\ominus}$ and $+\Delta S^{\ominus}$
B. $+\Delta H^{\ominus}$ and $-\Delta S^{\ominus}$
C. $-\Delta H^{\ominus}$ and $-\Delta S^{\ominus}$
D. $-\Delta H^{\ominus}$ and $+\Delta S^{\ominus}$
20. Sodium carbonate and hydrochloric acid react according to the equation below.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Which conditions will produce the fastest initial rate with 2.0 g of powdered sodium carbonate?
A. $\quad 100 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid at 323 K
B. $50 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid at 323 K
C. $100 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid at 348 K
D. $50 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid at 348 K
21. The rate information below was obtained for the following reaction at a constant temperature.

$$
2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2} \mathrm{~F}(\mathrm{~g})
$$

$\left[\mathbf{N O}_{2}\right] / \mathbf{m o l ~ d m}^{-3}$	$\left[\mathrm{~F}_{2}\right] / \mathrm{mol} \mathrm{dm}^{-3}$	Rate $/ \mathrm{mol} \mathrm{dm}^{-3} \mathbf{s}^{-1}$
2.0×10^{-3}	1.0×10^{-2}	4.0×10^{-4}
4.0×10^{-3}	1.0×10^{-2}	8.0×10^{-4}
4.0×10^{-3}	2.0×10^{-2}	1.6×10^{-3}

What are the orders of the reaction with respect to NO_{2} and F_{2} ?
A. NO_{2} is first order and F_{2} is second order
B. NO_{2} is second order and F_{2} is first order
C. NO_{2} is first order and F_{2} is first order
D. NO_{2} is second order and F_{2} is second order
22. Consider the following reaction.

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

A proposed reaction mechanism is:

$$
\begin{array}{ll}
\mathrm{NO}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g}) & \text { fast } \\
\mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \text { slow } \\
\mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \text { fast }
\end{array}
$$

What is the rate expression?
A. \quad rate $=k\left[\mathrm{H}_{2}\right][\mathrm{NO}]^{2}$
B. rate $=k\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]\left[\mathrm{H}_{2}\right]$
C. rate $=k[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]^{2}$
D. rate $=k[\mathrm{NO}]^{2}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]^{2}\left[\mathrm{H}_{2}\right]$
23. The reaction below represents the Haber process for the industrial production of ammonia.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta H^{\ominus}=-92 \mathrm{~kJ}
$$

The optimum conditions of temperature and pressure are chosen as a compromise between those that favour a high yield of ammonia and those that favour a fast rate of production. Economic considerations are also important.

Which statement is correct?
A. A higher temperature would ensure a higher yield and a faster rate.
B. A lower pressure would ensure a higher yield at a lower cost.
C. A lower temperature would ensure a higher yield and a faster rate.
D. A higher pressure would ensure a higher yield at a higher cost.
24. Which combination of intermolecular forces, boiling point and enthalpy of vaporization is correct?

Intermolecular forces	Boiling point	Enthalpy of vaporization	
A.	strong	low	low
B.	strong	high	low
C.	weak	low	high
D.	weak	low	low

25. Which is not a conjugate acid-base pair?
A. HNO_{3} and NO_{3}^{-}
B. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}$
C. $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}
D. HSO_{4}^{-}and $\mathrm{SO}_{4}{ }^{2-}$
26. The pH of a solution changes from $\mathrm{pH}=2$ to $\mathrm{pH}=5$. What happens to the concentration of the hydrogen ions during this pH change?
A. It decreases by a factor of 1000
B. It increases by a factor of 1000
C. It decreases by a factor of 100
D. It increases by a factor of 100
27. Based on information in the table below, which acid is the strongest?
A.
B.

Acid	$\mathbf{p} \boldsymbol{K}_{\mathbf{a}}$	$\boldsymbol{K}_{\mathrm{a}}$
HA	2.0	-
HB	-	1×10^{-3}
HC	4.0	-
HD	-	1×10^{-5}

28. Which combination will form a buffer solution?
A. $100 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid with $50 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide.
B. $100 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid with $50 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide.
C. $50 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid with $100 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide.
D. $50 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid with $100 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide.
29. The graph below shows the titration curve of $25 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ of hydrochloric acid with sodium hydroxide, of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ concentration. The indicator methyl orange was used to determine the equivalence point. Methyl orange has a pH range of 3.2-4.4.

If the hydrochloric acid was replaced by ethanoic acid of the same volume and concentration, which property of the titration would remain the same?
A. The initial pH
B. The pH at the equivalence point
C. The volume of strong base, NaOH , needed to reach the equivalence point
D. The colour of the titration mixture just before the equivalence point is reached
30. What happens to iodine when iodate ions, IO_{3}^{-}, are converted to iodine molecules, I_{2} ?
A. It undergoes reduction and its oxidation number changes from -1 to 0
B. It undergoes oxidation and its oxidation number changes from -1 to 0
C. It undergoes reduction and its oxidation number changes from +5 to 0
D. It undergoes oxidation and its oxidation number changes from +5 to 0
31. Consider the following reactions of three unknown metals X, Y and Z.

$$
\begin{aligned}
& 2 \mathrm{XNO}_{3}(\mathrm{aq})+\mathrm{Y}(\mathrm{~s}) \rightarrow 2 \mathrm{X}(\mathrm{~s})+\mathrm{Y}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \\
& \mathrm{Y}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Z}(\mathrm{~s}) \rightarrow \text { No reaction } \\
& 2 \mathrm{XNO}_{3}(\mathrm{aq})+\mathrm{Z}(\mathrm{~s}) \rightarrow 2 \mathrm{X}(\mathrm{~s})+\mathrm{Z}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})
\end{aligned}
$$

What is the order of increasing reactivity of the metals (least reactive first)?
A. $\mathrm{X}<\mathrm{Y}<\mathrm{Z}$
B. $\mathrm{X}<\mathrm{Z}<\mathrm{Y}$
C. $\mathrm{Z}<\mathrm{Y}<\mathrm{X}$
D. $\mathrm{Y}<\mathrm{Z}<\mathrm{X}$
32. The standard electrode potentials for two metals are given below.

$$
\begin{array}{ll}
\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{Al}(\mathrm{~s}) & E^{\ominus}=-1.66 \mathrm{~V} \\
\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Ni}(\mathrm{~s}) & E^{\ominus}=-0.23 \mathrm{~V}
\end{array}
$$

What is the equation and cell potential for the spontaneous reaction that occurs?
A. $2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{Ni}(\mathrm{s}) \rightarrow 2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Ni}^{2+}(\mathrm{aq}) \quad E^{\ominus}=1.89 \mathrm{~V}$
B. $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Ni}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{Ni}(\mathrm{s}) \quad E^{\ominus}=1.89 \mathrm{~V}$
C. $2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{Ni}(\mathrm{s}) \rightarrow 2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Ni}^{2+}(\mathrm{aq}) \quad E^{\ominus}=1.43 \mathrm{~V}$
D. $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Ni}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{Ni}(\mathrm{s})$
$E^{\ominus}=1.43 \mathrm{~V}$
33. The same quantity of electricity was passed through separate molten samples of sodium bromide, NaBr , and magnesium chloride, MgCl_{2}. Which statement is true about the amounts, in mol, that are formed?
A. The amount of Mg formed is equal to the amount of Na formed.
B. The amount of Mg formed is equal to the amount of Cl_{2} formed.
C. The amount of Mg formed is twice the amount of Cl_{2} formed.
D. The amount of Mg formed is twice the amount of Na formed.
34. Which of the structures below is an aldehyde?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
35. Which type of reaction occurs when 2-iodo-2-methylpropane, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{I}$, reacts with aqueous sodium hydroxide, $\mathrm{NaOH}(\mathrm{aq})$?
A. Addition
B. Free-radical substitution
C. $\mathrm{S}_{\mathrm{N}} 1$
D. $S_{N} 2$
36. Halogenoalkanes can undergo $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$ reactions with aqueous sodium hydroxide. Which halogenoalkane will react fastest with a $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of aqueous sodium hydroxide?
A. 2-chloro-2-methylpropane
B. 2-iodo-2-methylpropane
C. 1-chlorobutane
D. 1-iodobutane
37. Propanitrile can be prepared by reacting bromoethane with potassium cyanide. Which statement is not correct about the reaction between bromoethane and potassium cyanide?
A. The reaction is bi-molecular.
B. The reaction follows the $\mathrm{S}_{\mathrm{N}} 2$ mechanism.
C. Homolytic fission occurs between the carbon-bromine bond in bromoethane.
D. The cyanide ion, $: \mathrm{CN}^{-}$, acts as a nucleophile.
38. Which reactants could be used to form the compound below?

A. Butanoic acid and ethanol
B. Propanoic acid and ethanol
C. Ethanoic acid and propan-1-ol
D. Ethanoic acid and butan-1-ol
39. Which compound is optically active?
A.

1-chlorobutane
B.

2-chlorobutane
C.

2-aminoethanoic acid
D.

2,2-dimethylpropane
40. A piece of metallic aluminium with a mass of 10.044 g was found to have a volume of $3.70 \mathrm{~cm}^{3}$. A student carried out the following calculation to determine the density.

$$
\text { Density }\left(\mathrm{g} \mathrm{~cm}^{-3}\right)=\frac{10.044}{3.70}
$$

What is the best value the student could report for the density of aluminium?
A. $\quad 2.715 \mathrm{~g} \mathrm{~cm}^{-3}$
B. $\quad 2.7 \mathrm{~g} \mathrm{~cm}^{-3}$
C. $\quad 2.71 \mathrm{~g} \mathrm{~cm}^{-3}$
D. $\quad 2.7146 \mathrm{~g} \mathrm{~cm}^{-3}$

